Азотирование: различия между версиями

Материал из Портал ТОиР и Надежностя
Перейти к навигации Перейти к поиску
(Новая страница: «Азоти́рование — это технологический процесс химико-термической обработки, при которой поверхность различных металлов или сплавов насыщают азотом в специальной азотирующей среде. Поверхностный слой изделия, насыщенный азотом, имеет в своём составе...»)
 
Нет описания правки
 
(не показаны 2 промежуточные версии этого же участника)
Строка 1: Строка 1:
Азоти́рование — это технологический процесс химико-термической обработки, при которой поверхность различных металлов или сплавов насыщают азотом в специальной азотирующей среде. Поверхностный слой изделия, насыщенный азотом, имеет в своём составе растворённые нитриды и приобретает повышенную коррозионную стойкость и высочайшую микротвёрдость. По микротвёрдости азотирование уступает только борированию, в то же время незначительно превосходя цементацию и нитроцементацию.
Азоти́рование — это технологический процесс химико-термической обработки, при которой поверхность различных металлов или сплавов насыщают азотом в специальной азотирующей среде. Поверхностный слой изделия, насыщенный азотом, имеет в своём составе растворённые нитриды и приобретает повышенную коррозионную стойкость и высочайшую микротвёрдость. По микротвёрдости азотирование уступает только борированию, в то же время незначительно превосходя цементацию и нитроцементацию.
==Металлы и сплавы, подвергаемые азотированию==
Стали углеродистые и легированные, конструкционные и инструментальные.
Высокохромистые чугуны, высокохромистые износоустойчивые сплавы, хром.
* Титан и титановые сплавы
* Бериллий
* Вольфрам
* Ниобиевые сплавы
* Порошковые материалы
==Назначение азотирования==
* Упрочнение поверхности
* Защита от [[Коррозия (обзорная статья, А.Голдобин) | коррозии]]
* Повышение усталостной прочности
* Снижение трения
* Повышение износостойкости
В зависимости от назначения используемые технологические процессы азотирования могут существенно отличаться.
==Основные виды азотирования==
'''Азотирование в соляных ваннах'''
Погружение и выдержка деталей в растворе расплавленных солей при температуре 530—650 градусов Цельсия (не затрагивает структурное изменение материала).
Получаемая структура поверхности имеет:
* Толщина слоя: 0,01-0,6 мм;
* Поверхностная твердость — 400—1200 HV
* Снижение коэффициента трения в 1,5—5 раз;
* Хрупкость слоя — отсутствует;
* Повышение задиростойкости, включая нержавеющие стали;
* Повышение усталостной прочности в 1,5—2 раза;
* Коробление и поводки длинномерных деталей — практически отсутствуют.
* Коррозийная стойкость может достигать 800 часов в солевом тумане.
По сравнению с другими технологиями (газовым и плазменным азотированием), азотирование в соляных ваннах имеет меньшую глубину азотируемого слоя, но имеет лучшее показатели по коррозийной стойкости и шероховатости поверхности. Основным преимуществом является возможность быстро достичь необходимых характеристик, тем самым снижая время и стоимость обработки.
'''Газовое азотирование'''
Насыщение поверхности металла производится при температурах от 400 °C (для некоторых сталей) до 1200 °C (аустенитные стали и тугоплавкие металлы). Средой для насыщения является диссоциированный аммиак. Для управления структурой и механическими свойствами слоя при газовом азотировании сталей применяют:
двух-, трёхступенчатые температурные режимы насыщения разбавление диссоциированного аммиака:
воздухом реже водородом Контрольными параметрами процесса являются:
* степень диссоциации аммиака
* расход аммиака
* температура
* расходы дополнительных технологических газов (если применяются).
'''Каталитическое газовое азотирование'''
Это последняя модификация технологии газового азотирования. Средой для насыщения является аммиак, диссоциированный при температуре 400—600 градусов Цельсия на катализаторе в рабочем пространстве печи. Для управления структурой и механическими свойствами слоя при каталитическом газовом азотировании сталей применяют изменение потенциала насыщения. В целом применяются более низкие температуры, чем при газовом азотировании.
'''Ионно-плазменное азотирование'''
Технология насыщения металлических изделий в азотсодержащем вакууме (примерно 0,01 атм.), в котором возбуждается тлеющий электрический разряд. Анодом служат стенки камеры нагрева, а катодом — обрабатываемые изделия. Для управления структурой слоя и механическими свойствами слоя применяют (в разные стадии процесса):
* изменение плотности тока
* изменение расхода азота
* изменение степени разрежения
добавки к азоту особо чистых технологических газов:
* водорода
* аргона
* метана
'''Азотирование из растворов электролитов'''
Использование анодного эффекта для диффузионного насыщения обрабатываемой поверхности азотом в многокомпонентных растворах электролитов, один из видов скоростной электрохимико-термической обработки (анодный электролитный нагрев) малогабаритных изделий. Анод-деталь при наложении постоянного напряжения в диапазоне от 150 до 300 В разогревается до температур 450—1050 °C. Достижение таких температур обеспечивает сплошная и устойчивая парогазовая оболочка, отделяющая анод от электролита. Для обеспечения азотирования в электролит, кроме электропроводящего компонента, вводят вещества-доноры, обычно нитраты.
==Оборудование для азотирования==
Для проведения газового азотирования используются преимущественно шахтные, ретортные и камерные печи. Для подготовки аммиака перед подачей в печь используется диссоциатор.
Для проведения каталитического газового азотирования используются преимущественно шахтные, ретортные и камерные печи, оснащённые встроенными катализаторами и кислородными зондами для определения насыщающей способности атмосферы.
Для проведения процессов ионно-плазменного азотирования применяются специализированные установки, в которых происходит нагрев изделий за счёт катодной бомбардировки ионами и, собственно, насыщение.
Для азотирования из растворов электролитов применяются установки для электрохимико-термической обработки.
[https://ru.wikipedia.org/wiki/%D0%90%D0%B7%D0%BE%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 Статья из Википедии]
[[Категория:Антикоррозионная защита]]

Текущая версия от 13:29, 17 сентября 2023

Азоти́рование — это технологический процесс химико-термической обработки, при которой поверхность различных металлов или сплавов насыщают азотом в специальной азотирующей среде. Поверхностный слой изделия, насыщенный азотом, имеет в своём составе растворённые нитриды и приобретает повышенную коррозионную стойкость и высочайшую микротвёрдость. По микротвёрдости азотирование уступает только борированию, в то же время незначительно превосходя цементацию и нитроцементацию.

Металлы и сплавы, подвергаемые азотированию[править | править код]

Стали углеродистые и легированные, конструкционные и инструментальные. Высокохромистые чугуны, высокохромистые износоустойчивые сплавы, хром.

  • Титан и титановые сплавы
  • Бериллий
  • Вольфрам
  • Ниобиевые сплавы
  • Порошковые материалы

Назначение азотирования[править | править код]

  • Упрочнение поверхности
  • Защита от коррозии
  • Повышение усталостной прочности
  • Снижение трения
  • Повышение износостойкости

В зависимости от назначения используемые технологические процессы азотирования могут существенно отличаться.

Основные виды азотирования[править | править код]

Азотирование в соляных ваннах

Погружение и выдержка деталей в растворе расплавленных солей при температуре 530—650 градусов Цельсия (не затрагивает структурное изменение материала).

Получаемая структура поверхности имеет:

  • Толщина слоя: 0,01-0,6 мм;
  • Поверхностная твердость — 400—1200 HV
  • Снижение коэффициента трения в 1,5—5 раз;
  • Хрупкость слоя — отсутствует;
  • Повышение задиростойкости, включая нержавеющие стали;
  • Повышение усталостной прочности в 1,5—2 раза;
  • Коробление и поводки длинномерных деталей — практически отсутствуют.
  • Коррозийная стойкость может достигать 800 часов в солевом тумане.

По сравнению с другими технологиями (газовым и плазменным азотированием), азотирование в соляных ваннах имеет меньшую глубину азотируемого слоя, но имеет лучшее показатели по коррозийной стойкости и шероховатости поверхности. Основным преимуществом является возможность быстро достичь необходимых характеристик, тем самым снижая время и стоимость обработки.


Газовое азотирование

Насыщение поверхности металла производится при температурах от 400 °C (для некоторых сталей) до 1200 °C (аустенитные стали и тугоплавкие металлы). Средой для насыщения является диссоциированный аммиак. Для управления структурой и механическими свойствами слоя при газовом азотировании сталей применяют:

двух-, трёхступенчатые температурные режимы насыщения разбавление диссоциированного аммиака:

воздухом реже водородом Контрольными параметрами процесса являются:

  • степень диссоциации аммиака
  • расход аммиака
  • температура
  • расходы дополнительных технологических газов (если применяются).


Каталитическое газовое азотирование

Это последняя модификация технологии газового азотирования. Средой для насыщения является аммиак, диссоциированный при температуре 400—600 градусов Цельсия на катализаторе в рабочем пространстве печи. Для управления структурой и механическими свойствами слоя при каталитическом газовом азотировании сталей применяют изменение потенциала насыщения. В целом применяются более низкие температуры, чем при газовом азотировании.

Ионно-плазменное азотирование

Технология насыщения металлических изделий в азотсодержащем вакууме (примерно 0,01 атм.), в котором возбуждается тлеющий электрический разряд. Анодом служат стенки камеры нагрева, а катодом — обрабатываемые изделия. Для управления структурой слоя и механическими свойствами слоя применяют (в разные стадии процесса):

  • изменение плотности тока
  • изменение расхода азота
  • изменение степени разрежения

добавки к азоту особо чистых технологических газов:

  • водорода
  • аргона
  • метана

Азотирование из растворов электролитов

Использование анодного эффекта для диффузионного насыщения обрабатываемой поверхности азотом в многокомпонентных растворах электролитов, один из видов скоростной электрохимико-термической обработки (анодный электролитный нагрев) малогабаритных изделий. Анод-деталь при наложении постоянного напряжения в диапазоне от 150 до 300 В разогревается до температур 450—1050 °C. Достижение таких температур обеспечивает сплошная и устойчивая парогазовая оболочка, отделяющая анод от электролита. Для обеспечения азотирования в электролит, кроме электропроводящего компонента, вводят вещества-доноры, обычно нитраты.

Оборудование для азотирования[править | править код]

Для проведения газового азотирования используются преимущественно шахтные, ретортные и камерные печи. Для подготовки аммиака перед подачей в печь используется диссоциатор.

Для проведения каталитического газового азотирования используются преимущественно шахтные, ретортные и камерные печи, оснащённые встроенными катализаторами и кислородными зондами для определения насыщающей способности атмосферы.

Для проведения процессов ионно-плазменного азотирования применяются специализированные установки, в которых происходит нагрев изделий за счёт катодной бомбардировки ионами и, собственно, насыщение.

Для азотирования из растворов электролитов применяются установки для электрохимико-термической обработки.

Статья из Википедии